Glueing Analysis for Complemented Subtoposes

نویسنده

  • ANDERS KOCK
چکیده

We prove how any (elementary) topos may be reconstructed from the data of two complemented subtoposes together with a pair of left exact “glueing functors”. This generalizes the classical glueing theorem for toposes, which deals with the special case of an open subtopos and its closed complement. Our glueing analysis applies in a particularly simple form to a locally closed subtopos and its complement, and one of the important properties (prolongation by zero for abelian groups) can be succinctly described in terms of it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glueing Analysis for Complemented Subtoposes Anders Kock and till Plewe

We prove how any (elementary) topos may be reconstructed from the data of two complemented subtoposes together with a pair of left exact \glueing func-tors". This generalizes the classical glueing theorem for toposes, which deals with the special case of an open subtopos and its closed complement. Our glueing analysis applies in a particularly simple form to a locally closed subtopos and its co...

متن کامل

Categorical Glueing and Logical Predicates for Models of Linear Logic

We give a series of glueing constructions for categorical models of fragments of linear logic. Specifically, we consider the glueing of (i) symmetric monoidal closed categories (models of Multiplicative Intuitionistic Linear Logic), (ii) symmetric monoidal adjunctions (for interpreting the modality !) and (iii) -autonomous categories (models of Multiplicative Linear Logic); the glueing construc...

متن کامل

Small-tau expansion for the form factor of glued quantum star graphs

We compute the small-tau expansion up to the third order for the form factor of two glued quantum star graphs with Neumann boundary conditions, by taking into account only the most backscattering orbits. We thus show that the glueing has no effect if the number of glueing edges is negligible compared to the number of edges of the graph, whereas it has an effect on the τ term when the numbers of...

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

Sign-changing Solutions to Elliptic Second Order Equations: Glueing a Peak to a Degenerate Critical Manifold

We construct blowing-up sign-changing solutions to some nonlinear critical equations by glueing a standard bubble to a degenerate function. We develop a new method based on analyticity to perform the glueing when the critical manifold of solutions is degenerate and no Bianchi–Egnell type condition holds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996